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Connections between Kelvin functions and zeta functions with 
applications 

K Kirstent 
Fachbereich Physik, Universitiit Kaiserslautern, 6750 Kaiserslautem, Federal Republic of 
Germany 
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AbslraeL A very simple method for Bumming infinite series of the Lype 

is presented. As a mult  a series expansion in powers of a and b is obtained. relevant 
10 many physical applimrions. 

1. Introduction 

Using the zeta-function definition of functional determinants given first by Dowker 
and Critchley [l] and Hawking [2], the calculation of effective actions in different 
contexts IS121 and the consideration of the Casimir energy for several configurations 
113-191 leads to series of Kelvin functions of the type 

or multi-dimensional generalizations of this, where c = &l, n E N, a ,  b E R, and we 
assume b > la1 for absolute convergence. 

For example in five dimensional filum-Klein theories 14-81 (c = 1, a = 0), 
the parameter b is connected with the circumference of the compact fifth dimension. 
In the calculation of the Casimir energy 1181 (c = 1, a = 0), b is proportional to 
the product of a mass and a mmpactification length or plate separation. Finally, in 
the context of finite temperature quantum field theory of a free charged massive 
relativistic base gas (C = 1) or spin-; gas (C = -1) [9], b (respectively a) is 
proportional to the product of the inverse temperature with the mass of the field 
(respectively the chemical potential of a conserved charge). 

The most important property of the series (1.1) is that it is very useful in the 
range b > a, because the Kelvin functions are exponentially damped for b -+ 00 and 
so (1.1) converges very quickly. Often one would like to represent equation (1.1) 

$ Present address: UnivenilA aegii Studi ai itenro, Dipanimenio di Fiica, %ij% b v o  rrenioj. iiaiy. 
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in form of a power series in a and b, valid in the range b < 1, where (1.1) is not 
suitable. 

For example in finite temperature quantum field theory the range b < 1 means 
the high-temperature limit of the theory, which has been considered intensively in 
the context of &se-Einstein condensation of relativistic gases [2&22]. In order to 
find the high-temperature expansion of the free-energy or the grand thermodynamic 
potential of the spin-0 or spin-: gas many different methods and techniques have been 
employed [9,23-281. One possiblhty k to use the series representation of the Kelvin 
functions and the hyperbolic functions and to resum the resulting expressions [9]. The 
relevant resummation theorems have been derived by Weldon [29] and corrections 
have been given by Elizalde and Romeo [30], where additional contributions of 
contour integrals have been found. These resummation theorems have been used 
furthermore to calculate the Casimir energy of a scalar field with mass M in the 
space S1 x R"-', compactification length L, in the range M L  < 1 [B]. The 
question at which value of M L  1 contour integral contributions become significant 
is formulated. 

The aim of this paper is to obtain a power series expansion of 

in powers of a and b for arbitrary values of s E IC using a very simple derivation 
where no reference to the mentioned resummation theorems is made. The simplicity 
of this derivation and the generality of the result is the main motivation for presenting 
these considerations. 

Starting from the generalized inhomogeneous Epstein zeta function 

1 2 [ d ( n  + z ) ~  t m2Ia Z;"'(s; d; 2 )  := 
n=-m 

m E R, d E R, d > 0, 2 E C, m2+dRe(z2) > 0, valid for k ( s )  > 1/2, it is shown in 
section 2 that using a Mellin transformation the analytic continuation of Z;"'(s; 1; z )  
to Re(s) < 1/2 may be given in terms of equation (1.2) (for similar considerations 
see [31]). On the other side it is possible to analytically continue equation (1.3) by 
expanding Z;"'(s; 1; z )  in powers of m2 [19,23]. Of course the resulting expressions 
obtained by two different analytic continuation methods are equal by construction and 
with the replacement z = &, m = $, comparison yields the expansion of equation 
(1.2) in powers of a and b we are looking for. The series is convergent and the 
radius of convergence ir, determined; in the context of the Casimir energy this yields 
the range of values where the contour integral does not contribute. 

In section 3 physical applications of the result derived in section 2 are given. In 
particular, the calculation of the Casimir energy for a massive non-interacting bosonic 
field in S1 x R"-' [I81 and the derivation of the high-temperature expansion of the 
grand thermodynamic potential of a free massive spin4 and spin-f gas is given in a 
very compact form. In the context of the grand thermodynamic potential the given 
considerations provide the connection between the different methods presented for 
example in [9] and [23]. 
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2. Inhomogeneous Epstein-zeta functions 

The aim of this section is to derive a power series expansion of (1.2) in powers of Q 

and b for any dues  of s E C. 
Consider the generalized Epstein-zeta-function 

m E R, m > 0, where the given definition is valid for Re(s) > $ and mZ+Re(zZ) > 
0. Using a Mellin-transformation and employing for t E R,, U E C 

(2.2) 

which h due to Jacobi's relation between theta functions [32],  an analytical 
continuation of Z;.'(s; 1; t) with respect to s in terms of Kelvin-functions may be 
found with the result 

So Z;.'(s;l;z) is seen to be a meromorphic function with respect to s with poles of 
order 1 at s = 4 - n, n E W,. 
On the other side it is possible to expand (2.1) in powers of m2 [19,23], which 

yields 

F!X~P fhe prime meam omission of the summation index n = 0. !%r m2 < 1 the 
series is absolutely convergent and interchanging the n and 1 summation one finds 
the result 

with the Hunvitz-zeta function 
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Just by comparison of (23) with (2.5) the very interesting equation 

x { C H ( 2 S  + 21; 1 + 2) + C H ( 2 S  + 21; 1 - z ) }  

(2.6) 
m2d-1r(S) - r (s - 1/2) 

4&(z2 4- m2)’ 4 + 
valid for 0 < m < 1, m2 +Re( z 2 )  > 0, is derived. Obviously, the left hand side is an 
anaiyticai function with repect to S. R r  s = f - N and s = -N, N E w,, individuai 
terms on the right-hand side have poles of order one which cancel by construction. 
So for these values of s the right-hand side is to he understood as the analytical 
continuation to s = f - N, respectively s = -N, which always yields finite results. 

Using the Thylor series representation of CH(u; 1 + e) [33] 

valid for IcI < 1, the expansion we are looking for is derived 

The second term on the right-hand side shows the necessity of the condition 

The analogous representation for the series with alternating sign is easily found 
m2 + Re( 2) > 0. 

by noting that 

The ’Clylor series expansion in powers of m and L for the series with alternating sign 
then reads 
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(2.9) 

exact for 0 < m < f and 121 < f .  
Let us again stress, that (2.7) and (2.9) are valid for arbitray s E @, where for 

analytical continuation to these values. 
In the context briefly described in the Introduction, the values s = - N  and 

s = $ - N are of particular interest. The corresponding results are easily found by 
considering (2.7) and (2.9) at s = - N  + E, respectively s = - N  + + E, and to use 
Thylor or Laurent series expansions around E = 0 of the involved functions [34]. In 
the limit E -+ 0 the following special cases of (2.7) are found: 

s =  1- N and s = - N ,  N E Nu, the right-hand-side is to be understood as the 

(i) s = f - N 

cos( 27r1r) m 

KN(2n1m) 
(n1m)N 

f=1 

( N  - 1 -  l ) !  
X ( n m ) ' ( 2 n ~ ) ~ ~ ~ ~ ( 2 ~  - 21 - 2k) 1!(2k)! 

(ii) s = - N  

(21)! 
X (2"-2'(2*2)2"'4 1 + 21 - 2 k ) t  ( N  - 1)!1!(2k)! 
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(2.11) 

and for (2.9) they read: 

(iii) s = - N 

cos(2nlz) 
(7rlm)N KN(27rlm) 

m 

1=1 

k t l  ( N  - 1 - l)! - - 
f=U k=U 

x (7rm)2f(27r~)2kq(2N - 21 - 2k) 
(-1)N (21 + 2k)! 

+ - c E ( - l ) f l ! ( l  2 1=1 k=U + N)!(Zk)! 

(7)” z2k [I - 21t2lt2k ] CR(1  + 2l + 2k) 

+ ~ x ( $ ( N + l ) + y - 2 I n  4N! 

(2.12) 

(iv) s = - N 

(-1)N ( 1  - 1)!(21 + 2k - l)! 
c c ( - l )  ( 1  + N)!(2k)!(21 - l)! 2 f im  

=- 
1=1 k=U 

x (27rm)-2f(2rr2)Zkq(1+ 21 - 2k) 

( -1)N’n2 (m2 + (2.13) 

where $ ( z )  = I”(z)/r(z) and q ( s )  = (1-2’-’)CR(s). These results are, of 
course, in agreement with the results derived for example in [18,11] using different 

2Jiim2Nt’ N! 
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methods. In my opinion it is satisfying to see, that equations (2.10)-(2.13) may be 
summarized in (2.7) and (2.9) depending on a complex parameter s, which in the 
physical examples interpolates the dimension of spacetime. 

3. Physical applications 

In this section we want to give some physical applications of the results derived in 
section 2 The examples considered have already been discussed in the literature 
using resummation techniques [9,11,18] so our description will be very brief. 

Consider first the evaluation of the Casimir energy for a massive non-interacting 
bosonic field being defined in the space S' x E"''. Without repeating the analysis 
given in [18] (see equation (2.9) of that reference), the Casihnir energy density 
c ( n , L , M ) ,  depending on the mass M of the field, the compactification length 
L and the dimension n, may be given in the form 

where 

In [18], a series expansion in powers of L M  has been obtained by making use 
of the resummation theorems derived in [29,30]. In that approach a discussion of 
contributions of contour integrals is necessaly in order to determine for which values 
of LM the series is exact (see appendix B of [18]). Another method is provided 
in section 2 and inserting (2.10) (respectively (2.11))) with c = 0, m = (e) and 
n = 2N - 1 (respectively n = 2 N )  in (3.2), the series expansion for the energy 
c ( n , L , M )  is found (see equations (3.12) and (3.19) of [18]). The advantage of the 
described method is that no contributions of contour integrals have to be discussed. 
As argued in section 2 the results are exact for 0 < e < 1. In the context of [18] 
this means that the corrections due to contour integrals will vanish in this range. 

Let us now briefly mention the grand thermodynamic potential a,, n,, of a 
massive charged non-interacting spin4 or spin-; gas. The starting point for these 
considerations are the integrals [9,20] 

(3.3) 

for the spin-0 gas and 

x j d N k  [In [l + eXp{-P ( m + P ) } ]  + P -+ -P] (3.4) 

for the spin-4 gas, where V is the spatial volume, T is the temperature, p = +, d is 
the dimension of the Dirac representation of the 7-matrices, p is a chemical potential 
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associated with a conserved charge and N + 1 is the dimension of spacetime. It has 
been shown in [9], that equations (3.3) and (3.4) may be written as 

K ( N + I ) / 2 ( 1 p M )  cosh(lpp). 

With the replacements m = and z = i e ,  (2.10)-(2.13) provide the high- 
temperature expansion of fl, and a,. The results are well known and need not to 
be repeated here (see [9, U]). As we have shown the results for a,( p, M ,  p )  are 
exact for pz < M 2  (which is the standard restriction in finite temperature relativistic 
field theory) and (g)' < 1, whereas the results for n , ( p , M , j ~ )  are exact for (e)' < 1 and (e)' < 1. 

4. Conclusions 

The resummation theorems proven in [29, U)] have a wide range of applicability (see 
for example in [9,11,16-18,29,30,35,36]). One main motivation to look for them 
was to find the high-temperature expansion of the grand thermodynamic potential of 
a non-interacting massive bosonic or fermionic field. 

However, as we have seen the resummation of series Over Kelvin functions may 
also be obtained by a different and very simple method of analytical continuation of 
generalized Epstein-zeta functions. Equations (27) and (2.9) are the main results of 
this paper, important for example in the context of the physical applications which 
we have briefly described. 
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