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Abstract. A very simple method for resumming infinite series of the type
(£t .
z l(“+)1)lz oosh(la)]((n“)/z(lb)

is presented. As a result a series expansion in powers of a and b is obtained, relevant
to many physical applications.

1. Introduction

Using the zeta-function definition of functional determinants given first by Dowker
and Critchley [1] and Hawking [2], the calculation of effective actions in different
contexts [3-12] and the consideration of the Casimir energy for several configurations
[13-19] leads to series of Kelvin functions of the type

(=]
Z z(n+1)/2 cosh(la) K, 41y/2{1b) (1.1)
=1

or multi-dimensional generalizations of this, where ¢ = 1, n €N, a,b € R, and we
assume b > |a| for absolute convergence.

For example in five dimensional Kaluza-Klein theories [4-8] (¢ = 1, a = (),
the parameter b is connected with the circumference of the compact fifth dimension.
In the calculation of the Casimir energy [18] (¢ = 1, ¢ = 0), b is proportional to
the product of a mass and a compactification length or plate separation. Finally, in
the context of finite temperature quantum field theory of a free charged massive
relativistic bose gas (¢ = 1) or spm-— gas (c = —1) [9], b (respectively a) is
proportional to the product of the inverse temperature with the mass of the field
(respectively the chemical potential of a conserved charge).

The most important property of the series (1.1) is that it is very useful in the
range b>» a, because the Kelvin functions are exponentially damped for b — oo and
so (1.1) converges very quickly. Often one would like to represent equation (1.1)
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in form of a power series in a and b, valid in the range b < I, where (1.1} is not
suitable,

For example in finite temperature quantum field theory the range b < 1 means
the high-temperature limit of the theory, which has been considered intensively in
the context of Bose-Einstein condensation of relativistic gases [20-22). In order to
find the high-temperature expanslon of the free-energy or the grand thermodynamic
potential of the spin-0 or spm-- gas many different methods and techniques have been
employed [9,23-28). One poss:blhty is to use the series representation of the Kelvin
functions and the hyperbolic functions and to resum the resuiting expressions [9]. The
relevant resummation theorems have been derived by Weldon [29] and corrections
have been given by Elizalde and Romeo [30], where additional contributions of
contour integrals have been found. These resummation theorems have been used
furthermore to calculate the Casimir energy of a scalar field with mass M in the
space S' x R"~!, compactification length L, in the range ML « 1 [18]. The
question at which value of M L < 1 contour integral contributions become significant
is formulated.

The aim of this paper is to obtain a power series expansion of

*, o4l
Z w7y osh(la) Ky ), (1) (1.2)

in powers of « and b for arbitrary values of s € C using a very simple derivation
where no reference to the mentioned resummation theorems is made. The simplicity
of this derivation and the generality of the result is the main motivation for presenting
these considerations.

Starting from the generalized inhomogeneous Epstein zeta function

ZM(s;d;2) 1=

1
Z [d(n + 2)2 + m7)° (1.3)

=00

meR,deR,d> 0,z C, m*+dRe(z?) > 0, valid for Re(s) > 1/2, it is shown in
section 2 that using a Mellin transformation the analytic continuation of Zl’"z(s; I, z)
to Re(s) < 1/2 may be given in terms of equation (1.2) (for similar considerations
see [31]). On the other side it is possible to analytically continue equation (1.3) by
expanding Z{"’z(s; 1; z) in powers of m? [19,23]. Of course the resulting expressions
obtained by two different analytic continuation methods are equal by construction and
with the replacement z = 2‘:, m= zb , comparison yields the expansion of equation
(1.2) in powers of a and b we are looking for. The series is convergent and the
radius of convergence is determined; in the context of the Casimir energy this yields
the range of values where the contour integral does not contribute,

In section 3 physical applications of the result derived in section 2 are given. In
particular, the calculation of the Casimir energy for a massive non-interacting bosonic
field in S x R™~! [18] and the derivation of the high-temperature expansion of the
grand thermodynamic potential of a free massive spin-0 and spin-} gas is given in a
very compact form. In the context of the grand thermodynamic potential the given
considerations provide the connection between the different methods presented for
example in [9] and [23].
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2. Inhomogeneous Epstein-zeta functions

The aim of this section is to derive a power scries expansion of (1.2) in powers of a
and b for any values of s € C.
Consider the generalized Epstein-zeta-function

Z{"I(s; 1;2):= Z [(n +2)7+ mz}#a 2.1

n=—03

m € R, m > 0, where the given definition is valid for Re(s) > 1 and m?+Re(2?) >
0. Using a Mellin-transformation and employing for t e R, v € C

Z exp {~tn? 4 27inv} = (—)1/2 i exp{—ﬂ;(n—p)z} 2.2)

n=—0o0 n=—og

which is due to Jacobi’s relation between theta functions [32], an analytical
continuation of Z{”z(s;l;z) with respect to s in terms of Kelvin-functions may be
found with the result

2 NE s 1
Ziﬂl (S;l;z) = F—(—j—"-—mzs_l
oo
x frfs - -\ 44 —°°s—(—2”_’z)_,c, o (2nim) b 2.3)
4-4 L Crlm)07—s | (/0=s L2 | (-2)

So Z{"z(s;l; z) is seen to be a meromorphic function with respect to s with poles of
order 1at s=1—n,n €N,
On the other side it is possible to expand (2.1) in powers of m? [19,23], which

yields

m2+z2

2 & [=.+3 ' [= ] s l
M (s z) = (__.--1—-) + Z Z(__DIEE_(!_I:‘_('{;)__)mZI(n_,_Z)_zs_y 2.4)

where the prm’ne means omission of the summation index n = 0. For m? < 1 the

series is absolutely convergent and interchanging the n and { summation one finds
the result

2 I'ls+ 1
Z]m (S; 1; z) = (_—fﬁ) =+ E( 1)1 [(II"+ )
x {¢Cy(2s + 251 + z) +Cu(2s 4+ 201 - 2}}) (2.5)

with the Hurwitz-zeta function

Calviv) Z ,n__:,_
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Just by comparison of (2.3) with (2.5) the very interesting equation

cos(2nlz)
z (

Crlm) 787 K- (2mlm)

m?* r(s+ )
= (- ===
4/ § ™

x {Cy(2s 4+ 201+ z) + (25 + 201 - 2)}
m2-1T(s) F(s-1/2) ‘
tAE w4 @6)

valid for 0 < m < 1, m? 4+ Re(22) > 0, is derived. Obviously, the left hand side is an
analytical function with repect to s. For s = } - N and s = ~ N, N € N,, individual
terms on the right-hand side have poles of order one which cancel by construction.
So for these values of s the right-hand side is to be understood as the analytical

continuation to s = % — N, respectively s = — N, which always yields finite results.
Using the Taylor series representation of {5 (151 4+ ¢) [33]

Caly; 1+c)—Z( 1)“12:}'(" ")”c (v + k)c*

valid for |c| < 1, the expansion we are looking for is derived

00S(21rlz
Z « (wlm) 72— K1/2y-+(27im)

m2-l 2 & (s 4+ DT(2s + 21 + 2k) !
I 2k, 2
27 2 Y T vy Rt 22 m

1=0 k=0
2s-17 F(s-1
+ a 2( 2 (S)‘)\. - (SA 2)' (2‘7)
4wz + m=)? 4

The second term on the right-hand side shows the necessity of the condition
m? 4+ Re(z2) > 0.

The analogous representation for the series with alternating sign is easily found
by noting that

o 1 C0s(2miz) .

;:(—1) +1(_7rm_2)__’h(1/2)_,(21rlm)

=1

_ E oos(21r£z
< (mlm)1/2)-e

K(l/z)_,(Zwlm)
COS(41rlz)
22 < Zrlm)7D-2 K12, (47im). 28

The Taylor series expansion in powers of m and 2 for the series with alternating sign
then reads
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= ! o0s(2riz)
fZ(—l) +1( T 75 =K (1/2)_,(2nlm)
=1
m2 ! EVE i T(s + DT (2s + 21 + 2k)
- (=) Cr(2s + 21 + 2k)
2w Zu;, N2k)IT(2s +21) °R \
- e (o)

exact for 0 < m < Jand |z| < 1

Let us again stress, that (2.7) and (2.9) are valid for arbitrary s € C, where for
s=1-Nads=-N,N¢c Ny, the right-hand-side is to be understood as the
analytical continuation to these values.

In the context briefly described in the Introduction, the values s = ~N and
s = 1 = N are of particular interest. The corresponding resuits are easily found by
oonSIdermg (2.7) and (2.9) at s = — N + ¢, respectively s = —N + + ¢, and to use
Taylor or Laurent series expansions around e = 0 of the involved funcuons [34]. In
the limit ¢ — O the following special cases of (2.7) are found:

(i) s = — - N
Z €Os 21rlz) WS(2Lz) g (2mim)

N-1N-=I

= 2(7rm N Z 2( Lk

=0 k=0

x (—N;#(m)”(zmm(m ~ 21~ 2k)

( 1) (204 2k)  mn¥
fz;kzu( DIW(_) 221421 + 2k)

F( N+1/2) ( ZZ)N—I/Z

+ 4 /7N

NN
(4]1\31 {1{’( ) PN+ 1) —y(z) - w(- 7-’)+21nm} (2.10
(i) s = —
E (31(12)11:21)‘” Ky n(2mim)
< CDY Sy (1= DN2L+ 2k - 1)
- 2/mm §;(_1)I(1 F IRy R+ 2 m
(=N & > Z( )i+
2\/—m I=0 k:
k1

" (N_—(tz)‘l!ll?ﬁﬁ(z"m)'z'(?-”)“cntl +20 - 2k)+
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(- 1)N+1 N o 2,2

wrm 2 (V- l),t,[¢(1+1) 24(21 + 1)]
(=~ 1

+

N
+ R agman )
x [W(N+1)+2y-In {4n% (2* + m?)}]
1 1
_Z[‘(_N_i) @.11)
and for (2.9) they read:
i) s=1- N

Z( 1)’+1°°S(2")l§,) Ky (2rlm)

N-1N-I

= s & 2 g

=0 k=0
x (7m)¥ (2n2)* n(2N - 21 - 2k)

(—D)V 22 (21 + 2K)!
t3 ;g(_l)fl!(l+1\f)!(2k)!

21
% (%1‘_) sz [1 — 21+2i’+2k] CR(I + 204 2]6)
(=n~

+ 20 {w(N+1)+'r 21n( )+w( )+w(%—z)}

(2.12)

(iv) s=-N

= cos(2mlz)
§ : 41 -
1("1) —-—'-'"-'—( ] )(1/2) N 'K(I/Z) N(2‘nlm)

(1= D2+ 2k — 1)!
2fm ;;ﬂ( l)l(z ¥ NYZk)I(20 - 1)

x CR(21+2k) 21 Zk [1__22H-2k]
N N oo

E Z 1)I+k (20)!

m 5 N — DHI(2k)!

x (2rm)~ 2’(211'2)2" (1420 —-2k)
(-1)NIn2 s, nN 1 1
+ _ZﬁmZN“N! (m + z ) + ZF -N-— 3 (2.13)

where ¥(z) = ['(z)/[(2) and n(s) = (1—2‘“’)43(3) These results are, of
course, in agreement with the results derived for example in [18, 11} using different
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methods. In my opinion it is satisfying to see, that equations (2.10)-(2.13) may be
summarized in (2.7) and (2.9) depending on a complex parameter s, which in the
physical examples interpolates the dimension of spacetime.

3. Physical applications

In this section we want to give some physical applications of the results derived in
section 2. The examples considered have already been discussed in the literature
using resummation techniques [9, 11, 18] so our description will be very brief.

Consider first the evaluation of the Casimir energy for a massive non-interacting
bosonic field being defined in the space S! x R™~!, Without repeating the analysis
given in [18] (see equation (2.9) of that reference), the Casimir energy density
e(n,L,M), depending on the mass M of the field, the compactification length
L and the dimension n, may be given in the form

2

e(n,L,M) = RCET YLy Ty

S(n,L, M) 3.1
where

© 1 LMIi (n+1)/2 X
(_‘“—) I‘(n-l-l)IZ(LMl)' (3.2)

S(n’L’M)=ZﬁTf >
i=1

In [18], a series expansion in powers of LM has been obtained by making use
of the resummation theorems derived in [29,30]. In that approach a discussion of
contributions of contour integrals is necessary in order to determine for which values
of LM the series is exact (see appendix B of [18]). Another method is provided
in section 2 and inserting (2.10) (respectively (2.11))) with ¢ = 0, m = (5¥) and
n = 2N — 1 (respectively n = 2N} in (3.2), the series expansion for the energy
e(n, L, M) is found (see equations (3.12) and (3.19) of [18]). The advantage of the
described method is that no contributions of contour integrals have to be discussed.
As argued in section 2 the results are exact for 0 LM < 1. In the context of [13]
this means that the corrections due to contour integrals will vanish in this range.

Let us now briefly mention the grand thermodynamic potential Qg4, Qp, of a
massive charged non-interacting spin-0 or spin-1 gas. The starting point for these

considerations are the integrals [9, 20]

Qp(B8, M, u) = (2 e fd”k [in [t = exp {~8 (VIF+ MZ+ 1) }] + 1 = -]
(3.3)

for the spin-0 gas and

d TV

Qp(B8, M,u) = “30nF

x /de [m [1 + exp{—ﬁ (\/mﬂu)}] +pu— -,u] (.4)

for the spin--’i gas, where V is the spatial volume, T is the temperature, 8 = ,—1‘:, dis
the dimension of the Dirac representation of the ~-matrices, u is a chemical potential
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associated with a conserved charge and N + 1 is the dimension of spacetime. It has
been shown in [9], that equations (3.3) and (3.4) may be written as

Qp(B, M, p) = -4V TN Z A\ 5 K(ny1y72{1BM) cosh(IGp)

Qp(8, M,p) = —2dVTN+IZ( h (L

(N+1)/2
IN+1 pr )

With the replacements m = %;r"‘i and z = i%‘ri, (2.10)-(2.13) provide the high-
temperature expansion of Qg and Q. The results are well known and need not to
be repeated here (see [9,23]). As we have shown the results for Qg(3, M, u) are
exact for u? < M? (whu:h is the standard restriction in finite temperature relativistic

field theory) and (-‘3—) < 1, whereas the results for Qg {3, M,u) are exact for
(£’ < 1and (8M)? < 1.

4, Conclusions

The resummation theorems proven in [29, 30] have a wide range of applicability (see
for example in [9, 11, 16-18, 29, 30, 35,36]). One main motivation to look for them
was to find the high-temperature expansion of the grand thermodynamic potential of
a non-interacting massive bosonic or fermionic field.

However, as we have seen the resummation of series over Kelvin functions may
also be obtained by a different and very simple method of analytical continuation of
generalized Epstein-zeta functions. Equations (2.7) and (2.9) are the main results of
this paper, important for example in the context of the physical applications which
we have briefly described.
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